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Ada Transition Research Project (Phase I)
Final Report

1.0 ABSTRACT:

In this study we investigated several issues, methods, and tools that impact the software
life cycle development that the Army uses to design, implement, test, and maintain appli-
cation software. The purpose of this project was not only the evaluation of these methods
but the identification of problems affecting the success of software development within
the constraints of current development policy. This paper outlines a process for tran-
sitioning older systems using current software engineering methodologies.

The U.S. Army Information Systems Engineering Command (USAISEC) maintains o'er
100 Standard Army Management Information Systems (STAMISs). The need has been
identified to modernize these systems. One way is to upgrade these systems from a
COBOL, flat file, batch processing mode to systems written in Ada in order to increase
functionality, maintainability, and reusability. While the appropriate technology exists for
this effort, no systematic knowledge exists about how to effectively and efficiently make
the transition. This lack of knowledge hinders the development of an appropriate transi-
tion strategy.

2.0 OBJECTIVE:

The objective of this project was to examine the application of various tools and methods
to the transition of existing STAMIS applications from COBOL to systems written in Ada,
designed for re-use, and utilizing newer technological capabilities. Specifically, this pro-
ject examined the application of reverse engineering tools and methods, compared func-
tional decomposition versus object-oriented design, determined specific CASE tool re-
quirements for a STAMIS type environment, assessed Ada training provided by the De-
partment of Defense, and established a framework for examining the maintainability/re-
usability of code.

Upon completion of the re-designed system, run time parameters and functionality will
be compared to the existing system. The tasks completed under the project include:
evaluation of CASE (Computer-aided Software Engineering) tools; reverse engineering
a STAMIS to create a high level description of its functionality; redesign of the system
using object-oriented and functional decomposition methods; and analysis/comparison of
design approaches.
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3.0 APPROACH:

AIRMICS (Army Institute for Research in Management Information, Communications,
and Computer Sciences) in conjunction with SDC-A (Software Development Center-At-
lanta) selected the Installation Material Condition Status Reporting System (IMCSRS), an
operational STAMIS written in COBOL, to re-engineer and redesign using both functional
decomposition and object-oriented design methods.

Two key issues for an initial transition effort include the selection of an appropriate sys-
tem and the selection of appropriate personnel. Many development problems were
avoided by selecting a system that was not extremely complex, involved few interfaces,
had a reasonable number of lines of code, decent documentation, etc.. The knowledge
and confidence acquired during the initial "Proof-of-Principle" effort can be used for
future systems development.

3.1. Hardware Environment:

The hardware selection decision for this transition effort was based in part on the soft-
ware tools selected - certain tools only run on certain platforms. The basic premise is -
do not commit to a hardware platform until the software tools have been selected. Since
the target language was Ada, we were not bound to a specific development platform.
Because one of the strengths of Ada is portability, recompilation should be the only step
required to port a system implemented in Ada to the target platform. Another considera-
tion in the selection of hardware is that most CASE tools have extensive random access
memory and secondary memory requirements. In addition, a multi-tasking windowed
environment is normally required, especially for the more complex CASE tools.
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The hardware chosen to implement the aralysis and re-desiqn consisted of a SUN work-
station. This machine was chosen not only for its compatibility with the operating envi-
ronment already in place but also because it supports the graphical user interface (GUI)
necessary for building the diagrams using the CASE tools.

3.2. Software Environment

3.2.1. Operating System

The system development was done under SUN OS 3.5 with the UNIX 4.2 Operating
system. Again, this choice was based not only on compatibility but to increase the port-
ability of the resulting code.

3.2.2. Programming Language

An Alsys Ada compiler was being obtained for use in the implementation stage of the
project for coding the new system based on the designs.

Ada offers many features not found in other languages. It allows a program to easily
interface the hardware. It also supports real time programming and current execution of
several program tasks. These features are advantageous for embedded weapons systems.
However, such features have limited value to an MIS system. The main drawback of
using Ada for MIS system is its very awkward and complex input/output(I1/O) routines.
For example, in Pascal to print a line of text consisting of several different data types on
the screen requires only a single statement. In Ada each type must have its own 1/0
package and separate statements are required for each. This makes programming more
difficult and non-intuitive. For programs which are not involved in extensive I/O this is a
minor inconvenience. However, for MIS systems where I/O is a major portion of the
design, this drawback can become formidable.

3.2.2.1 Ada Training (Course Critique)

The following sections contain a course critique of Ada training taken by Major David
Stevens of AIRMICS and Captain Richard Wassmuth of SDC-A in preparation for this
design effort. This extract of their comments on the course is submitted as an assessment
of the formalized Ada training being offered by the Department of Defense.

The four weeks of training were necessary to solidify the concepts of software design as
well as the Ada language itself. The first week covered basic language as well as general
software design concepts. The following two weeks were sufficient to learn the details of
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the language to include packaging, tasking and generics. The concepts were tested in an
excellent group project assigned the last week. The amount of time allowed was appropri-
ate to cover the different components of the Ada language.

The course assumes that the student knows about structured programming, data struc-
tures and their associated algorithms (stacks, queues, linked lists, etc.), and other soft-
ware engineering principles. The course takes a "hands-on" approach to learning Ada
with time equally divided between the classroom and the computer laboratory. The
programming projects are designed to teach one or two features of the language at a time.
This approach proved to be an excellent methodology for those migrating to Ada from C
or Pascal. This was because they possess many of the same features. Those who had
been programming in COBOL for many years had a difficult time grasping such simple
concepts as passing parameters to a procedure or function. This made it even more
difficult for them to understand the concept of tasks and object-oriented programming.
Students that were not familiar with COBOL were for the most part able to master the
new concepts without difficulty.

Lecture, followed by hands-on exercises to demonstrate the new concepts, was an excel-
lent means of teaching the language. This teaching method has to be the most significant
aspect of the class. While the students complete the exercises, the instructor is available
to coach the student through any difficulties they would encounter. Two organizational
changes could improve the overall training. The object-oriented design lessons were
taught after the language concepts. Design techniques are the most basic concepts that
must be learned to create maintainable software. Regardless of the language, software
engineering techniques must be learned first. The student can then look to a specific
language, Ada in this case, for constructs that will implement the design concepts. This
means of learning, leads to the other change. The concepts of packages should be taught
following the object-oriented design lessons. Packages are the most basic building blocks
in the Ada language. They provide for the implementation of objects and collections of
operations. The packages should be taught to be a critical part of the implementation, not
just an optional construct.

The primary area of weakness observed in the class was the lack of their ability to decom-
pose a problem. Most programmers in the class had a very difficult time in conceptualiz-
ing a real world problem and then translating it into functional modules that would make
up the final program. This is clearly a major weakness in our programmers that can have
a major impact on the maintenance of future systems. This would seem to imply that
even a well designed system, can end up as a poorly structured program that is expensive
to maintain.

It is recommended that in addition to Ada training the courses on problem solving be
given. A beginner course in structured programming and algorithms should be a pre-
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requisite to taking an Ada programming language course.

Overall, the training was excellent. However, Ada was designed to work from a high
level of understanding of the problem to a more detailed level for implementation. Teach
the language in the same manner. Work from a good design to the high level Ada con-
structs of packages, subprograms and tasks. Then teach the more low level constructs of
the language such as looping, assignments and data structures. Nothing is gained from a
powerful language without a strong design.

3.2.3. CASE/Development Tools:
3.2.3.1. Overview of CASE (Computer-aided Software Engineering) Tools

Software Engineering is comprised of procedures (project tracking, project control, soft-
ware quality assurance, configuration management, metrics), methods (analysis, design,
code, test), and tools (coding, analysis, testing, project management, documentation).
CASE includes various tools that can partially automate portions of the software develop-
ment life cycle. Initially, the tools were primarily software aids to assist in the generation
of graphical representations of a system (the representation form depends upon what
method the specific tool supports). Current tools incorporate other features such as pro-
ject management, requirements tracking, code generation, etc. CASE tools are often
characterized as "Upper" or "Lower" CASE. Upper CASE tools support front-end devel-
opmental activities such as business modeling, requirements analysis, entity relationship
modeling, etc., while lower CASE tools support back-end stages such as code restructur-
ing and re-engineering.

Though various CASE tools perform well at various stages of system development, no
true full life cycle tool exists at this time (though many claim to do so). In order for tools
to be fully integrated, two actions need to be completed - a common repository; and
translation mechanisms from stage to stage, e.g. translation of data flow diagrams to
structure charts. National Institute of Standards and Technology (NIST) has published the
Information Resource Dictionary Standard (IRDS) which outlines the standard manner in
which to organize information within a repository as well as the operations to be sup-
ported on the repository. The key with the repository issue is that NIST has developed a
standard which outlines the required interfaces to a repository. By vendors adhering to
the IRDS standard, information exchange among various CASE tools is made possible.

3.2.3.2. CASE Evaluation Criteria:

Some of the CASE tool characteristics that were used in evaluating the various products
that were under consideration for this design effort include:
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functionality
interfaces
performance
time ron•straints
meO'ods supported - data flow, process driven, data modeling, etc.
data dictionary
single, multi-user
code restructuring
requirements tracking (links features in the application to requirements identi-
fied in analysis and flags requirements for which no feature exists)
analysis
design
code generation
configuration management
error analysis
automatic documentation generation
cost

Because of the multitude of CASE products on the market (each with competitive
strengths and weakness), the key in selection is to determine at the beginning of the
project what characteristics are critical to the tasks to be accomplished (whether the pro-
ject involves design of a new system, redesign, code maintenance, etc.). Once this is
determined, the various tools can be compared against these critical success factors until
the tool meeting most, if not all, factors is selected.

We selected the CASE tool suite produced by Cadre Technologies called Teamwork to be
utilized in the redesign portion of the project (specific tools included - structured analysis,
structured design, Ada structure graphs, and Ada Code Generator - as well as the re-
quired Teamwork environment module). The primary reasons these tools were selected
was because they supported both object-oriented and functional decomposition design
methods, generation of template Ada code, and support for 2167 documentation. This
was also a fairly mature product, well supported, and one of the most popular CASE tools
on the market.

The Teamwork CASE tools included modules for system analysis, information modeling,
real-time system analysis, system design, and a utility called Teamwork/access which
controls access to other software development packages, project management systems,
and document production systems. All Teamwork components work, look, and feel simi-
lar. The user interface consisted of a mouse-driven windowing environment containing
pop-up and pull-down menus. Multiple windows could be edited simultaneously.
All Teamwork products access a project database that collects project models and their
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model objects (Structure Charts, Data Flow Diagrams, module specifications, etc.). This
database creates a development environment to completely support the analysis and de-
sign phase of software life cycle development by furnishing a common interface to model

objects.

Consideration was given to purchasing re-engineering/restructuring tools (e.g. Bachman
toolset which is also good for data modeling), however, the decision was made not to due
to the expense of such tools. If the system being re-designed was large and complex,
such tools could play a critical role.

3.3. IMCSRS Redesign

')ane of the issues to be explored during this project was to examine which design method
- object-oriented or functional decomposition - is the more appropriate for STANIIS-like
systems. Object-oriented design is a fairly new and unproven method to design systems,
yet guidance is to utilize this method for (re)design activities. Functional Decomposition
is the more traditional and accepted design method. To explore this issue, project mem-
bers were divided into two teams - one re-designed IMCSRS using the object-oriented
approach and the other using Functional Decomposition. A comparison of the two de-
signs is provided later in the paper, however, the general conclusion is that object-ori-
ented, while being a more difficult method initially, produces a design that is better
suited for re-use, maintainability, and simplification of complex systems.

3.3.1. Reverse Engineering

In the absence of an automated tool to perform an analysis of the source code, a task
order was undertaken to investigate/develop a method to reverse engineer the IMCSRS
systems. The findings of this task outlined a method for determining the original func-
tional requirements of the system from existing code. This involved a bottom up analysis
and transformation of source code coupled with a top down construction of the problem
description.

3.3.1.1. Overview of Reverse Engineering Methodology

A method to reverse engineer a system is through the process of "synchronized refine-
ment". Synchronized refinement relates the execution of the program with the program's
functional requirements. This is done by simultaneously performing a bottom-up analy-
sis of the source code with a top-down synthesis of the application model. Synchronized
refinement should be applied only in situations where a detailed, line-by-line analysis of
the source code is required. The analysis is controlled by the determination of design
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decisions.

Design decisions are data structures and coding practices intended to accomplish struc-
tural goals of the designer. When a program is written, the original designer makes a
series of decisions to form a solution to a problem by decomposing it into pieces and then
indicating how the pieces work together to solve the problem. The type of design deci-
sions normally done during the reverse engineering process are the following:

1. Composition/decomposition - Programs are built up from separate modules. This is
usually implemented in the code using separate procedures to divide the program into
parts.

2. Encapsulation/interleaving - Sub-components interact with each other. If the interac-
tions are limited and occur through explicit interfaces, the component is said to be encap-
sulated. If two or more components use the same section of code or the same data
structure, they are considered to be interleaved.

3. Generalization/specialization - A program data structure performs a similar function
or it coded similar to another component.

4. Data/Procedure - The designation of program variables and procedures is a design
decision that may give information as to program function, if the designer chooses appro-
priate names for the application.

3.3.1.2. Project-specific Approach

One of the outputs this task was a high level description of the Installation Material Con-
dition Status Reporting System (IMCSRS) - an operational STAMIS that we had selected
for redesign. The current IMCSRS system is composed of approximately 10,000 lines of
COBOL code and is batch oriented. This high level specification provided the starting
point (an overall view of the system's functions) for a more detailed system description
that could be used as the input to the redesign phase. The following steps outline the
additional re-engineering steps taken to produce a detailed requirements definition:

(a) Before a system can be re-designed, the current system characteristics/functions must
be well documented and understood. Because a functional description for the IMCSRS
system had never been documented, this was the first task to be completed. Input into the
creation of the functional description included system user manuals, programmers guide,
maintenance guide, and relevant regulations governing the system, interviews with the
system maintainer(s), and source code. A key to understanding a system's functioning is
to concentrate on inputs and outputs. Most STAMISs are primarily concerned with data
collection and the production of various reports. If intermediate or output information is
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derived from input data, the relevant code must be located and examined in detail.

Once the current system functioning was documented, the next step involved the produc-
tion of a new functional description (requirements documentation) to include new func-
tionality to be added to the re-designed system (e.g. interactive processing, interactive
data validation, . . . ). Once this has been accomplished, the functional description must
be validated with the appropriate personnel to include the system maintainer, end-users,
and the Functional Proponent. This functional decomposition walk-through is to ensure
that no requirements have been missed.

During the re-engineering process it is important to not go into great detail with the
existing code - if you do you will simply be re-implementing. The key is to discover the
basic functions (as the system currently runs), then add new desired features (interac-
tivity, etc.).

The methodology used relied on a variety of representation techniques . The were 4 main
steps involved in reverse engineering IMCSRS:

1. Construct a textual description of the application. Concurrently devise and revise a
system's requirements summary.

2. Construct nested Data Flow diagrams describing the relationships among the system's
cycle, programs and major files.

3. Construct Jackson Diagrams describing the structure of the files used in the system.

4. Analyze the algorithmic structure of the system using the process of Synchronized
Refinement.

Textual Description

The textual description was written to obtain an initial understanding of the application
domain that the system models .

a. The description was derived from information external to the actual system source
code. This was based on system documentation, (user guides, operating manuals) fur-
nished with IMCSRS.

b. At the textual description level, references were not made to the programs's internal
structure or to the programming language used in order to maintain a high-level of ab-
straction.
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c. The process of deriving the description was repeated at the subprogram and program
levels. Each process was described in terms of the requirements placed on it by the
system.

d. A summary was produced that consolidated the overall functional system requirements
in a list format from the textual description.

Data Flow Diagram

The next step in the methodology is the construction of Data Flow Diagrams (DFD).
DFDs characterize the major functional activities and files contained in the system. Be-
ginning with a Context Diagram that described the overall system behavior, multiple lay-
ers of DFDs were constructed in a nested, hierarchical structure.

Jackson Diagrams

After the Data Flow Diagrams were constructed, the input/output structure of each pro-
gram was developed to give a more detailed description of the files. The technique used
to represent this information is called a Jackson Diagram.

Note: The CASE tools used in this effort (IDE's SOFTWARE THROUGH PICTURES) pro-
vided an editor to construct Jackson Diagrams. The editor was integrated with a Data

Dictionary and could perform consistency checks on the constructed diagrams.

It was necessary to acquire a better understanding of the functions of IMCSRS. The docu-
mentation was at times ambiguous and the program had been modified using non-struc-
tured programming practices making the code hard to follow. The code had to be inter-
preted by performing a line-by-line analysis. This technique of synchronized refinement
resulted in an annotated structural description of how the system functions.

Synchronized Refinement was accomplished to some extent by the use of the multiple-
window environment provided on the SUN workstation. We designated two windows for

the code analysis and application synthesis activities. Steps were eliminated by using a
source code control system such as SCCS available under UNIX.

3.3.2. Object-Oriented Design (OOD)

3.3.2.1 Overview of OOD Methodology

- 10 -



Object-oriented design is a new approach to system modeling that evolved as a natural
consequence to object-oriented programming. There is currently no universally agreed
upon definition of what constitutes the object-oriented design approach. It has been
described as a cognitive process for capturing, organizing, and communicating the essen-
tial knowledge of the system's "problem space" and for the model formed gives guidance
on using specific techniques to map this "problem space" to a "solution space". The
method focuses on the concept of abstraction - illuminating important system attributes/
entities/objects and suppressing other low level physical/functional implementation con-
siderations. Terms such as information hiding, "black box" design, or encapsulation have
also been used to describe this method because information concerning detailed design or
implementation features need not be known by multiple developers implementing a sys-
tem designed in this manner - only the interface specification need be known. With this
method systems are decomposed based on the principle of hiding the design and imple-
mentation decisions about the abstractions. Only the interface need be known to instan-
tiate an object or process within an object.

In the object-oriented environment, data are primary, procedures are secondary, func-
tions are associated with related data, and a bottom-up approach is used for develop-
ment. The major impedance to acceptance of this method is that it involves an unfamiliar
way of thinking to most system designers (data versus functional perspective).

An object is defined as an entity (file, device, organizational unit, events, physical loca-
tions, etc.) that is itself defined by a set of common attributes and services or operations
associated with it (sort, retrievevalue, read, write, etc.).

Perhaps the strongest features of this design approach include increased reusability,
maintainability, understandability, and partitioning of the problem so that several pro-
grammers can implement the system concurrently and with little communication if the
interfaces have been well defined.

The object-oriented design process involves the following phases:

1. identify the objects and their attributes
2. identify the operations suffered by and required of each object
3. establish the visibility of each object in relation to other objects
4. establish the interface for each object
5. implement each object

The Object-oriented Design (OOD) methodology was studied in "Software Engineering
with Ada", Grady Booch, Second Edition (1986). This book is an excellent guide to
learning OOD and applying it to the Ada programming language. Note that the objective
of the book is not to give the reader detailed instruction on the Ada language, rather a



study of OOD and how it applies to Ada. It uses good examples, working from simple to
more complex. Each example presenting a more detailed study of OOD and Ada. This
book can be used as a self-study guide for even the beginning programmer. It was used
as the "bible" for design of IMCSRS. The only shortcoming of the book is in its editing.
Many typing errors can be found in the example Ada code causing some confusion and
frustration to the reader.

The object-oriented development method allows a designer to capture the "real world"
problem domain in the software. The software and data structures can actually "look"
like the problem domain being implemented. The steps currently being used for object-
oriented design follows:

1. Identify the objects and their attributes.
2. Identify the operations that affect each object and the

operations that each object must initiate.
3. Establish visibility of each object in relation to other

objects.
4. Establish the interfaces of each object.
5. Implement each object.

Identifying the objects is the most difficult step in the design methodology. A program-
mer can more easily associate data with an article, device, item, any world "thing."
These objects can be a unit, device, telephone, gas, data base or any abstract object.
Abstract objects, such as speed and time, do not have form. Each object has associated
with it attributes that define the object. For the object HUMAN, some of the attributes

are sex, height, weight and age. More appropriately, the attributes for EMPLOYEE could
be social security number, employee number and salary. Buhr represents an object by a
rectangle. The attributes are not graphically represented but are implemented as fields in

the defining data structure.
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EMPLOYEE

Each object has operations that act on it. Some of the operations are active, others
passive. The active operations alter the object's state and the value of it's attributes. The
passive operations do not alter the object but usually return the values of the object's
attributes. The operations are established either as visible operations which are accessi-
ble by other objects or local operations that can only be used by the object itself. Each
operation is displayed as a smaller rectangle inside the object. Buhr diagrams identify
visible operations by "binding" them to the object. The binding is represented by attach-
ing the operation to the side of the object.

EMPLOYEE

ADD
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Local operations are illustrated by separating the operation from the side of the object.

EMPLOYEE

Once all of the objects, their attributes and operations have been defined, the visibility
between objects must be established. The visibility will determine if one object "sees" or
has access to the operations or attributes of another object. It is imperative for good
software engineering to limit the visibility as much as possible. Buhr diagrams illustrate
visibility by a directional arrow.
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In this Buhr diagram, Objects B & C are visible to Object A. Object D is visible to Object
C. Object A is not visible to any other object.

The next design step is to establish the interfaces between objects. The parameters passed
between the initiating object and the receiving object must be established. The parame-
ters are defined as in , out , and in-out. The in parameters are sent to the operation.

The out parameters are received from the operation and the in-out parameters are sent in

to the operation, modified and sent back out of the operation. The Buhr diagram illus-
trates these interfaces with a directional arrow, the parameter mode, formal parameter
and parameter type.

In the following diagram, the in-out parameter ALL._EMPLOYEES of type EMPLOYEES
is being passed to the SORT object for manipulation and return to the originating object
after modification. The in parameter THEEMPLOYEE_FILE of type EMPLOYEEFILE
is being passed to the LOAD object in order to initiate a process, in this case, the loading
of the file to be manipulated. The contents of the parameter are not modified and are not
returned to the originating object. The parameter attributes and types are stored in a data

dictionary and must be consistent when interfacing objects (i.e. the type of parameter

must agree between objects).
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The final step in the design is to implement each object. The data structures representing
the object will primarily be based on the object attributes. The bodies of the operations
must then be developed.

3.3.2.2 Project-specific Approach

The first step in the object-oriented design was to develop a functional description for the
system. The requirements had to be defined as specifically as possible. The information
was taken from the current COBOL system maintenance manual and available user
guides. One of the most useful tools which helped with understanding the system, was
the creation of a "System/User" chart. The chart showed the interface between the soft-
ware and the user. The information on the chart included but was not restricted to the
following

1. Software locations.
2. Hardware types. (mainframe, PC, etc).
3. Communications (Autodin, Modems, etc).
4. Input sources.

5. Report Destinations.
6. Overall responsibilities for the system.
7. Location of input/output processing.
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NEW SYSTEM/USER CHART

The COBOL version of IMCSRS was used at the installation level, division level and
regimental level. The system was processed on an Amdahl mainframe at the installation

level and on a Honeywell mainframe at the division/regiment level. Trunks of the ASIMS
(Army Standard Information Management Systems) network as and the Autodin network
at the telecommunications centers (TCC) were used to transfer data to Forces Command
(FORSCOM), Training and Doctrinal Command (TRADOC) and Materiel Readiness Sup-

port Activity (MRSA). Inputs came from reportable units in the form of hard copy DA
Form 2406 and a pre-processed file of 2406 information from the sub-units. Addition-
ally, a reportable equipment file was sent from FORSCOM via the ASIMS network to the
DOL (Directorate of Logistics).
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Reports went to the DOL who had overall responsibility for running the system. Because
the system was operated on the Regional Data Center (RDC) the Director of Information
Management (DOIM) at each installation actually input the data and received the output

reports which were then delivered to the DOL.

After the functional description was validated for correctness, the system was designed
using object-oriented procedures. One of the basic goals of object-oriented design is to
mirror the real world. The System/User chart established a base-line to better understand
the system and serve as a blueprint for developing the object-oriented design. Buhr
diagrams were used to illustrate the design by CADRE'S "Teamwork" CASE Tool. Grady
Booch's methodology was followed for the object-oriented design. The following steps
were used to develop the object-oriented design of the system:

1. Developed a "System/User" chart.
2. Identified the objects.
3. Identified the attributes of each object.
4. Identified the operations that affect each object and the

operations that each object must initiate.
5. Established visibility of each object in relation to

other objects.

6. Established the interfaces of each object.
7. Implemented each object.

These steps were repeated many times during design refinement.

The new System/User chart was a modification of the mainframe version. The inputs and
outputs remained the same but the processing requirements were relocated. The system
was moved from a mainframe computer to a personal computer at the DOL. All inputs

and outputs would be processed at the DOL. The DON would no longer be required to
key the data to tape and run the batch system. Their only function would be to convert
the desktop system output on disk to a format acceptable for transmission over the
Autodin network.

Once the new System/User chart was developed, it was easy to identify the system ob-
jects. These high level "real world" objects were divided into four classes:

1. Reportable Units - the units that were required to report on
the DA Form 2406.

2. Reportable Equipment - the equipment identified as
reportable items.

3. Unit 2406s - the hard copy DA Form 2406.
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4. Reports - hard copy and files generated by the system.

[REPORTABLE UNITSI

EQUIPMENT J

I UNIT 2406s j

Other objects were defined during design refinement. These objects, often referred to as
"abstract" objects, were used to supplement the "real-world" objects. Five abstract ob-
jects were defined:

1. Synchronizer - to manage the data bases.
2. Retrievers (3) - Retrieve Unit, Retrieve Equipment and Retrieve

2406 to give easy access to the data by the Reports object.
3. Command 1/0 - to control all high level menu display and

selection operations.
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Attributes were selected to define each object using the header information on the DA
Form 2406. Other information needed to define the unit was subsequently added. Re-
portable Units were defined by the following:

1. Unit Identification Code (UIC)
2. Utilization Code
3. To Installation
4. From Unit
5. TOENumber
6. Station/Division Code

Reportable Equipment attributes were limited to items defining a general piece of equip-
ment. Only items of information that were common to all ECCILIN and models of
Army-wide equipment were included. Reportable Equipment was defined by the follow-
ing:

1. ECC/LIN
2. Noun
3. Model
4. DA Organizational Readiness Rate Average

The Unit 2406 was defined by the fields on the actual DA Form 2406. The information
was unique to the equipment posture of a specific unit. All general information was
captured in the Reportable Units and Reportable Equipment objects. DA Form 2406 is
divided into two parts, the header and equipment status (line items). The Unit 2406
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object was divided in the same two parts to parallel the form. The outermost package
defined the overall DA Form 2406 and included the following:

1. Period of Report (From)
2. Period of Report (To)
3. Date Prepared
4. Line Items

An object Line Item was derived as a smaller object of the object Unit 2406. It was
defined by the following attributes:

1. Sequence Number
2. ECC/LIN
3. Model
4. Effect on System Code
5. Equipment Utilization Code
4. Authorized Quantity
5. On Hand Quantity
6. Possible Days
7. Available Days
8. Non-Available Days due to Organizational Supply
9. Non-Available Days due to Organizational Maintenance

10. Non-Available Days due to Support Supply
11. Non-Available Days due to Support Maintenance

During implementation the attributes became fields of the records representing these vari-
ous objects.

Once each object was clearly defined, the operations that affected the object had to be
identified. The basic operations were the same for each object. The Reportable Units,
Reportable Equipment and Unit 2406s had to be Added to a list, Deleted from a list and
Modified. The operations getting the information from the user for each attribute had to
be defined (ie: Get ECC, GetNOUN etc). They also had to be Sorted and Searched. At
a very detailed level, the implementation had to be considered. When each object ,-as
represented by a file more operations surfaced: Open, Close, Create, Save, Load and
Compact.

Some of these operations were determined to be "visible" or available to an outside
object; other operations would be used locally by the object itself. In the Buhr diagrams
the visible operations were "bound" or touching the package (ADD, MODIFY), where the
local operations were separate (SORT, SEARCH).
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The "Retrievers" were defined to have one passive operation per object attribute. It was
defined as passive since it had access to the data structure but could not alter it. The
function would reach into the data base and retrieve the value of the specific attribute in
the format defined. The data structure would remain unchanged. For example, Retrieve
Equipment was defined to have the following "passive" operations (functions):

1. ECCGLN - returns the current equipment ECC/LIN.
2. Noun - returns the current equipment name.
3. Model - returns the current equipment model.
4. DA OR Average - returns the current equipment DA operational

readiness rate.
5. First Equipment - returns the position of the first piece of

equipment in the list.
6. Last Equipment - returns the position of the last piece of

equipment in the list.

The Synchronizer was designed to control the data base for the Reports object. It per-
formed nine operations.

1. Reset Units, Reset Equipment & Reset 2406 Items - moves to
the first element in the list.

2. Next Unit, Next Equipment, Next 2406 Item - moves to the
next element in the list.

3. Find Equipment, Find Unit - locates a particular element in
its respective list.
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Minimizing the interfaces with other objects was a primary concern. Grouping the object
with its operations met this goal; however, an object on its own serves no purpose--
another object must use the operations associated with it. For example, the Reports
objects did not need to "see" the database. If the database was to be changed, the output
reports would not have to be rewritten. That was the primary reason for the passive
"retriever" packages. The "retrievers" would serve as an interface between the database
and the report writers. Unless an object had a good reason for altering or even 'seeing"
another object, it was not given visibility. So the visibility sequencing started at the
database.

,FP 
O CSS 

_IM C SRS

REPOTABL UNIS.SCOMMAND 1/0

REPOTABE L J J REPORTS

UIr 24o6s I

The main procedure, Process IMCSRS, was assigned visibility to all three data bases,
Reportable Units, Reportable Equipment and Unit 2406s. This visibility was necessary to
Add, Delete and Modify the specific objects within each class. The main procedure also
was assigned visibility to Command 1/0 and Reports allowing control of the selected
commands/menus as well as report generation.
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The Synchronizer was also given visibility to all the three data bases to ensure necessary
data was pulled into memory from the files at the appropriate time. The Reportable Unit
would be brought into memory along with its associated 2406. The first line item would
be located on the 2406 and the Reportable Equipment information would be brought into
memory. All necessary information would be in memory for use by the Reports object to
write reports.

REPORTABL NT1-UI

REPORTABLE L ETV QUIMNT
EQUIPMENT
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The "retrievers" were given visibility to their associated database only. Each attribute for

that particular object would be accessible through the three retrievers. For example,
Retrieve Unit had visibility only to Reportable Units.

RETRV_2406

LINEITEM

The RETRV 2406 was designed to look like DA Form 2406. The header information was

contained in the basic package; the specific line item information was contained in the
object Line Item.

RETRV UNIT j

SYNCHRONIZER ,RETRVEQUIPMENT , RE

RETRV 2406
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Reports was given visibility to the "retrievers" and the Synchronizer. It had to have
access to the data via the "retrievers" and control of selecting data from the three data
bases via the synchronizer. The Reports object could then manipulate and use informa-
tion from the data base without knowing how it was physically structured. By "hiding"
the physical structure of the data base from the report writers, the data base could be
removed and replaced in the future with a faster commercial data base management
system without the reports being rewritten.

The visibilities were established to give specific objects access to operations and data of
another object. The interfaces between the operations were established. The data that
was sent and received between operations was identified and used in a subprogram for-
mal parameter to establish the interface. For example, the SORT operation of Reportable
Units would accept a table of type Unit Location Table, sort it in ascending order and
return it. The couple (bi-directional arrow) displays an in-out parameter. If the arrow
pointed toward the operation it would be an in parameter only, and inversely, if it pointed
away from the operation, the parameter would be an out parameter only.

SORT

THEUNITLOCATIONTABLE: UNITLOCATIONTABLE

LOADNEW- / -
EQUIPMENT No.

FILENAME : STRING

The high level components of the system were completed with the establishment of the
object interfaces. The system had been separated into logical objects that reflected the
real world. The operations required to operate on each of the objects had been identified

and the visibility between objects and interfaces to allow the operations to be accessed
had been established. The design was ready for implementation. To implement the
design, only the data structures used to represent the objects and the bodies of each
operation need to be written.
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3.3.2.3. Results (Ada Structure Graphs, Ada Code)

The redesign resulted in three significant products. An up to date functional description
was developed and used as a contract between the Proponent Agency and the designers.
It specified exactly what the proponent wanted the system to do. The requirements defini-
tion is so critical during design that the functional description was mandatory.

Ada Structure Graphs (ASG) were generated by the CADRE "Teamwork" CASE tool.
They implement "Buhr Diagrams" giving a high level view of the system. They are easy
to modify for future software changes and should be an integral part of the programmers
maintenance manual. The system is easily learned from these graphs. These diagrams
can easily be translated into code specifications. The "invocations" or visibility lines
generate the Ada "with" statements. The packages and subprograms are interpreted as
the associated package, procedure, function and task subprograms. The invocations with
coupling will show subprogram specifications with parameters. All design specifications
to include the most detailed interfaces can be derived from these graphs.

The "Teamwork" CASE tool included Code Generator (CG) that interpreted the Ada
Structure Graphs (ASG). The system read the Buhr diagrams and generated the system
specifications. These system specifications were in usable Ada specification format.
Body "stubs" were also generated for each package and subprogram. The system allowed
notes which were inserted into the code as exceptions, data structures and program logic
to be attached to each object . This code was then processed with a simple compiler that
checked the design logic for completeness. It generated errors specifying the location of
the incorrect design. After a clean compile, the Ada specifications and bodies were
written to separate files for use during implementation.

3.3.3. Functional Decomposition (Structured Analysis and Design)

3.3.3.1 Overview of Structured Design Methodology

The method for redesign of IMCSRS from the functional decomposition side of the pro-
ject consisted of a structured development methodology. In this approach, the system is
analyzed from a functional perspective. The functions and procedural nature of the sys-
tem were of primary interest; the data is considered during the later stages of develop-
ment. The structured development is made up of two distinct phases: Structured Analy-
sis and Structured Systems Design ("Top-down design"). Structured Analysis can be
described as the activity of deriving a structural model and the accompanying structured
specifications to give a clear "definition of the problem". Structured Design can be
defined as the development of a computer system solution to a data processing problem,
creating a new system containing the same components and process relationships outlined
during the analysis of the system.
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The particular structured development techniques used during the project were those out-
lined by DeMarco and Yourdon. There are slightly different approaches to structured
analysis, but the DeMarco method contained the basic elements required. Also, the par-

ticular CASE tools chosen to implement the design and analysis of the system follow the
concepts of DeMarco and Yourdon in their functionality.

The structured analysis of a system precedes its design; structured specifications act as
direct input for the design phase. By developing a structured specification that is graphi-
cal using the CASE toolset, we obtain a model of the system that is very concise and easy
to interpret.

The main building block of the Structured Analysis of a System is the Data Flow Diagram
(DFD). A DFD is a graphical representation of a system that depicts the active processes
and their interrelationships. DFDs consist of 4 basic elements: Data Flows (directional
arrows) , Processes (circles) , Data Stores ( 2 parallel lines), and Sources/Sinks (rectan-
gles).

Data Flows represent the movement of data. This is the symbol chosen to show the
interface between components on a DFD. Data Flows are basically the media through
which data are transmitted. They are labeled with names that described the composition
of the data.

A process bubble is placed on a DFD when some transformation of data occurs. Data
can be manipulated within a process either of 2 ways: (1) the structure of the data can
change, producing as output a reformatted version of the original data (2) the information
in the data can be transformed, generating new data. One of the most difficult tasks
during the structured analysis phase is reducing system activities to processes that trans-
form data. Each process should receive a descriptive name that gives a clear picture of
the type of transformation occurring within the function.

A data store is where some temporary storage of data occurs. Data stores can represent
files, information on magnetic tape, card indexes, entire databases, etc.

The Source/Sink symbol depict where the data required by the system originates and
where the output of the system ends up. A source/sink can be a person or organization
external to the system that is the net originator or recipient of data (a source is a data
originator; a sink receives data). These symbols are only present on the context diagram
for a system. A Context Diagram is a DFD at the highest-level of abstraction for a
system; it is usually shown as a single process bubble containing the name of the system
with data flows to and from sources and sinks. The context diagram should show the

interface between the outside world and the system being developed.

The DFDs within the structured specification were developed using top-down partitioning.
Top-down partitioning allows the system to be decomposed into a multidimensional
arrangement with differing levels of detail so that there is a smooth progression from the
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most abstract (top) to the most detailed (bottom). By assigning functions in the system to
unique elements within a DFD, redundancy is eliminated. The structured specification
also has to be disassociated with the hardware, vendor, or operating procedures of the

current environment. It needs to focus only on how the system functions. Unlike conven-
tional flowcharts, DFDs don't show flow of control or procedure sequences. The system
specification should only be concerned with the pieces of a system and how those pieces
relate to one another, not the sequence in which they occur or the number of iterations
involved. The main emphasis in a DFD is the flow of data. The structured specification
is organized from the viewpoint of data, i.e. the processing that a piece of data goes
through from beginning to end of the system. This gives a better overall view of the
system since it is not limited to how a particular user interfaces with individual portions of
a system.

In the structured design portion of a system development, the structured specification
generated in the analysis phase is utilized as a roadmap towards the new design. By using
the structured specification as a well-defined statement of the problem, structured design

allows the form of the problem to guide the solution. The design itself is not the final
system but a plan for implementing the new system. Structured design can also help
outline a set of criteria for evaluating the proficicrncy of a design solution as it relates to
the original problem. Structured design derives a simplified, graphical representation of a
system by partitioning the functionality and organizing hierarchical relationships. Parti-
tioning systems modularizes function; effectively isolating functions from updates and
changes in different portions of a system.

The main tool within structured design is the structure chart. Like a DFD, the structure
chart is a multidimensional arrangement of a system. A structure chart depicts the parti-
tioning of a system into modules, the organization and hierarchy between the modules,
communication interfaces between the modules, and the labels for the modules. The
basic elements within a structure chart are: modules, invocations, and couples.

A module is represented by a rectangular box. The contents of a module (the module
specifications) are not shown on the structure chart, but can be considered as a continu-
ous set of program statements that have in common input/output, function, mechanics
and internal data. A module could be a subroutine, a function, or system call. System or
library modules are called pre-defined modules since their development is not part of the
design; they perform a function that can be accessed without having to be coded. The
modules on a structure chart serve the purpose of "black boxes" in that the actual imple-
mentation of the function are transparent to the designer. This allows the programmer
flexibility in coding a particular function as long as the input/output of the module follows
the design. The function within a module may be further broken down into sub-functions

by invoking subordinate modules at a lower level of the hierarchy. This is in keeping with
the structured design concept of "one function per module" but allows subtasks to exe-

cute splecific portions of a function.
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The connection between modules (invocation), depicted as an arrow from one module to

another, shows module calls. Invocations do not show calling sequence for module com-
munication nor does it show the number of iterations. It just shows that a module can

potentially invoke a particular subordinate module. The details of module access are

handled during actual implementation of a function.

The communication between modules is handled through coupling. Module invocations
represent how modules are connected; couples show data items moving from one module
to the next. Graphically, couples are drawn as an arrow with a circular tail. The amount
of coupling between modules determines the measure of independence between them.
The level of coupling can also be examined by the designer to ascertain the overall quality
of a design. The higher the coupling (and therefore, the data dependence) between mod-
ules, the increase in the probability of a change in one modules, the increase in the
probability of a change in one module affecting another module. Minimizing the amount

of coupling minimizes the ripple effect of program changes and leads to a system that is
more robust. Coupling within a system can be reduced by eliminating unnecessary rela-
tionships between modules.

Another method of designing a more robust system and ensuring proper partitioning of a
structure chart is determining the level of cohesion within a module. Cohesion is examin-
ing how the activities within a single module relate to one another. Coupling and cohe-
sion are interdependent in that the cohesion of a module directly affects the level of
coupling between it and other modules. Constantine and Yourdon's methodology of
structured design delineates 7 levels of cohesion possible between modules:

a) A functionally cohesive module limits itself to the performance of one and only one
task. This level of cohesion within a structure chart ensures the highest level of maintain-
ability within a system and is the most desirable level.

b) Sequential cohesion occurs when a module outputs information to be used as input in
another module within a system. This type of cohesion is maintainable, but the amount
of independence between modules is increased.

c) Communicatively cohesive modules contain elements that share input/output data
from a common activity. Because of the interrelation between these modules that share

access to global data, there is a tendency towards redundant coupling or duplication of

function.

d) Procedural cohesion is distinguished by control flow between activities that are possi-
bly unrelated and execute different functions with a module. This type of cohesion is
characterized by flags or switches transmitted as data between modules.

e) Temporally cohesive modules are made of elements that are connected to each other
only by a time sequence of events. These elements in the module do not necessarily
share functionality. This type of cohesion can also lead to redundant coupling since there
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may be a tendency to reproduce code in other modules that have the same type of time
dependence.

f) Logical cohesion describes modules that contribute to a similar category of functions
to be executed external to the module. In this instance, a module is used to perform
several functions depending upon how it is invoked. The activities within the module are
forced to share a single interface.

g) The final type of cohesion, coincidental cohesion, is the least desirable in that it
exhibits the worst level of coupling and maintainability. A coincidentally cohesive mod-
ule performs activities that have very little relation to one another. They have no well-
defined function; the calling module is often tasked with sending a control flag to the
receiving module to decide what is to be done. This requires the calling module to be
aware of the internals of the called module, which violates the "black box" concept.

The DFDs of the structured analysis phase are converted into structure charts in the
design phase through transform analysis. Transform Analysis is a strategy for deriving a
first-cut structure chart from the analysis of a system. The initial design is then taken
through several iterations of refinement using the methods of determining cohesion and
coupling. The main difference between a DFD and a structure chart is the hierarchical
nature of a structure chart. Names of a resulting structure chart do not necessarily relate
directly to names of processes on the original DFD. The beginning of the transform
analysis process involves determining the portion of a DFD that contains the essential
functions of a system. This central transform will outline the basic functions that must be
accomplished within a system and lead directly to the development of a structure chart.

3.3.3.2 Project-specific Approach

The functional decomposition portion of the project was accomplished using the Team-
work/SA and Teamwork/SD CASE tools available from Cadre. Both of these tools were
designed following the structured analysis and structured design methodologies previously
mentioned.

Teamwork/SA is an environment for systems analyst enabling the creation and verification
of functional systems specifications. Teamwork/SA consists of tools for the rapid creation
and editing of DFDs, process specifications, and data dictionary entries. Built-in Model
Configuration Management tools organized models into leveled sets and helped establish
relationships between DFDs and their corresponding process specifications. A versioning
facility provided an audit trail during project development by tracking the history of pro-
ject updates for review. TeamworklSA also maintains a consistency check function with
detailed knowledge of structured analysis that gauges system quality for correctness.

TeamworklSD is an integrated set of design aids for employing a structured systems design

- 31 -



methodology. This tool for creating structure charts, module specifications, and other
graphic symbols contained within the design process provided a rapid graphical user inter-
face for planning a system. There was also an embedded design rule checker in Team-
work/SD that would verify a proposed design's overall validity.

The CASE tools were relatively easy to become familiar with, since there was a standard
interface and access method for the Cadre products. There was also tutorial information
for the Teamwork/SA tool that familiarizes the user with the various editors and object
creation tools.

Learning the structured design/analysis methodology was a matter of reviewing several
books, articles, and technical reports on the subject. The choice of DeMarco and Your-
don was due to the connection between their particular implementation of the design
process and the CASE tools chosen to develop them. Since the project was involved with

the transitioning from an existing system to a new design, parts of the normal life cycle
development for a system were either merged or excluded from the actual steps in the
design. The lack of functional users and access to up-to-date documentation on the
existing system made it necessary to make certain assumptions about functionality within
the system. It was not clear initially whether the system was to be designed as a more
structured version of the old system or if a completely new design with more efficient
functionality using better file access methods was the goal. Originally we approached the
design with the former goal in mind, therefore relying heavily on the description of the
old IMCSRS system. Once the choice was made to implement a new design of the sys-
tem, the old environment was used only as a foundation.

3.3.3.2.1 Systems Analysis

The initial problem in developing a new design for IMCSRS using functional decomposi-
tion was to analyze the functional requirements of the new system. The data flow dia-
grams (DFDs) developed during the reverse-engineering of IMCSRS were helpful in un-

derstanding how the processes within the current COBOL version of IMCSRS interacted,
but if we wished to take advantage of a structured methodology within the new system, it
would be necessary to come up with DFDs for the new design.

We needed to begin our analysis by determining the overall context of the new system.

The context of the system basically describes how the system interfaces with the real
world; it outlines the boundary between the outside world and the internal functions of
the system. The context diagram for the system is a very simple diagram depicting the

external processes that interact with IMCSRS as sources/sinks. On this diagram, we are
only concerned with 3 interfaces: 1) Operating system, 2) Data entry operator, and 3)
Reporting units.

-- The operating system communicates with IMCSRS by not only controlling the program
execution, but also by supplying the UICNMASTER and ECCLIN_MASTER files as inpt.
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These files are updated by IMCSRS.

-- The data entry operator is the person or persons within the DOL (Directorate of Logis-
tics) that supply the information from the DD 2406 used to generate the 2406 transaction
file. On the current version of IMCSRS the information exists as card input that the data
operators run through the system in batch mode. In the new system, the 2406 will be
entered through a menu-driven screen interface. The operator also enters any requests
for updating the ECCLIN MASTER and UIIC_MASTER files

-- The reporting units include the installation, division, and major command recipients of
the output reports. MRSA, FORSCOM, and TRANSCOM are part of the group, receiving
their information via AUTODIN.

How the sources/sinks receive the output data or produce the input data is not important
at this level of abstraction during the analysis of the system. They only appear on the
context diagram to represent the external view of IMCSRS.

SYSTEM CMASTER fiICeRANSACONS OPERATOR

IM It

SREPORTINS

UNITS

CONTEXT DIAGRAM

The next level within the DFD hierarchy, level 0, outlines the major processes that take

place within the system. IMCSRS performs 4 different functions:

1. Updates the UICIMASTER file

2. Updates the ECCLIN MASTER file
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3. Creates, edits the 2406_TRANSACTION file
4. Generates output reports

The process bubbles were labeled accordingly. Data flows that enter a process bubble
without an originating process are considered to enter the diagram from one level higher
in the hierarchy. For example, the UICTRANSACTIONS data flow is a component of
information obtained from the data entry operator at the context diagram level. By the
same token, data flows that have no termination process extend to the parent DFD. The
child DFD is a breakdown of the inputs/outputs from its corresponding parent process.
All data flows leading away from the GENERATE_2406_REPORTS process bubble would
appear in a data dictionary as components of the IMCSRSREPORTS data flow entering
the REPORTING UNITS sink on the context diagram.

U6SACT.ONS UIC MASTER ECCLINMASTER ECCLIN- TA

UICIn ECCLIN
MA.$ •.. MASTER

DD2406 TRANSACTION

22406
FILE•

REPORTS

LEVEL 0 DFD

The files that are being used at this level are represented as data stores. When a data
flow enters or leaves a data store and is not labeled, all the data items contained in the
data store are being passed as one unit. The data flow leading from the UICMASTER
data store to the UPDATE_UICMASTER passes the entire UICMASTERRECORD for
processing. The non-labeled incoming arrow for the UIC_MASTER store indicates that
the entire updated record is being sent to the master file for storage.

So far, we are still only identifying the processes that take place within IMCSRS, not how
they execute their functions. As an illustration of how the decomposition of the processes
takes place, look at the level 0 DFD. Process bubble 1, UPDATEUICMASTER, is not
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APPENDIX B (Data Flow Diagrams, Structure Charts)
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